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The structures of 6-methyl-4,8,9-triphenyl-2-oxa-3,7-diazaspiro[4.4]nona-3,6-dien-1-one (3) and N-[(2-
Methyl-4,5-diphenyl-1H-pyrrole-3-carbonyl)oxy]benzamide (4) were established by X-ray crystal-structure
analysis. A significant improvement in the procedure currently available for the synthesis of these compounds is
described. Ab initio and DFT calculations were carried out on the compound 4 and its precursor 3, and
compared with X-ray results. In particular, to relate structural features to biological properties, the
conformational characteristics and rotational barrier of compound 4 were studied.

Introduction. ± Hydroxamic acid derivatives are synthetic targets of interest, not
least because of their biological activity, especially as enzyme inhibitors [1] and metal
chelators [2].

We recently described the regioselective synthesis of N-(pyrrolecarbonyl)oxy
amides by sequential oxazol-5(4H)-one cycloaddition and nitrile oxide addition
starting from (Z)-4-(arylmethylidene)isoxazol-5(4H)-ones 1 [3] (Scheme). These
novel amides 4 appear to have promising biological activity; indeed, one of the
derivatives (Ar� 3-MeOC6H4) was selected for further in vivo testing on the basis of
initial anticancer screening2).

In light of these results, we were encouraged to undertake a study of the molecular
structure of compounds 3 and 4 by X-ray crystal-structure analysis. Thus, for the
compound 3, to understand the nature of the geometric distortion due to molecular
packing and H-bonds, and to confirm the reliability of the carbonyl bond angle, we
describe an ab initio geometry optimization. Moreover, since detailed knowledge of the
conformational behavior and rotational potential-energy surface is of great importance
because various physicochemical and biological properties are strongly influenced by
molecular conformations, for compound 4, we computed the internal rotational barrier
around the O�N bond by scanning the corresponding torsional angle with X-ray-
structural data as the starting geometry.
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Results and Discussion. ± The molecule 3 contains a substitued spiro system
obtained by 1,3 dipolar cycloaddition of a mesoionic compound (MPO), 4-methyl-2-
phenyloxazol-5(4H)-one (2), with an 4-(arylmethylidene)isoxazol-5(4H)-one (1).
Crystals are made up of discrete molecules of (8R,9R)-6-methyl-4,8,9-triphenyl-2-
oxa-3,7-diazaspiro[4,4]nona-3,6-dien-1-one separated by normal Van der Waals con-
tacts and H-bonds. Besides the spiro atom, the compound has two additional
stereogenic centres: C(5) and C(6).

Since the compound crystallizes in the centrosymmetric space group P1≈, in the solid
state, it is a perfect racemic mixture of one of the possible diastereoisomers (S,S,S) and
(R,R,R). Fig. 1 shows an ORTEP view of an enantiomer with (S,S,S) configuration at
its stereogenic centres. A molecule of MeOH, used as a crystallization solvent, is
present in the asymmetric unit and forms a H-interaction with the atom N(2). The two
planes of the spiro center, defined by the atoms C(1)�C(2)�C(3) and
C(4)�C(2)�C(6), form an interplanar angle of 92.6(2)�. The least-square plane
calculated for the isoxazolone fragment shows how it is perfectly planar and forms a
dihedral angle of 33.53(9)� with the Ph plane bonded to C(3) (C(3)�C(7)�
1.470(3) ä). The dihydro pyrrole ring is not flat, and the deviations from the least-
squares plane calculated for the five atoms are: C(6) �0.138(2), C(2) 0.106(2), C(4)
�0.034(2), C(5) 0.125(2), and N(2) �0.044(2) ä. Puckering parameters [4] (Q� 0.221
(2) and �� 140.8(4)�) indicate a distorted envelope conformation. The ring bears as
substituents a Me and two Ph groups, which form an interplanar angle of 98.55(7)�. The
bond distances and angles involving the spiro atom are in good agreement with
corresponding values reported for other spiro[4.4]derivatives [5]: C(2)�C(4)�
1.536(3) ä, C(2)�C(6)� 1.563(3) ä, C(2)�C(3)� 1.502(3) ä, C(1)�C(2)�C(6)�
113.4(2)�, C(3)�C(2)�C(6)� 114.7(2)�, C(3)�C(2)�C(4)� 118.2(2)�, C(1)�C(2)�
C(4)� 110.1(2)�, C(3)�C(2)�C(1)� 100.1(2)�, and C(4)�C(2)�C(6)� 100.9(2)�.
The difference in bond angles C(3)�C(2)�C(4) and C(1)�C(2)�C(6), which are
118.2(2)� and 113.3(2)�, respectively, are mainly determined by steric hindrance
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between the Ph group at C(3) and the Me group at C(4) (C(8) ¥¥¥ C(25)� 3.683 ä). In
the isoxazolone fragment, we observe the usual asymmetry in the carbonyl bond
angles: O(1)�C(1)�O(2)� 121.9(2)� and O(2)�C(1)�C(2)� 129.6(2)�. As already
stated in [6], this asymmetry is based on steric and electronic factors. Structural
parameters within the two rings show further peculiarities in this portion of the
molecule; isoxazolone ring bond distances are consistent with extended � delocaliza-
tion over the C(3)�N(1)�O(2)�C(1)�O(2) fragment, while slight the differences in
double bond lengths for C(3)�N(1) and N(2)�C(4) (1.280(3) ä and 1.266(3) ä, resp.)
may be determined by the different H-bonds in which N(1) and N(2) are involved. The
pyrrole N-atom N(2), besides a weak intramolecular interaction with H(24) at C(24)
(C(24) ¥¥¥ N(2)� 3.072(3) ä with C(24)�H(24) ¥¥¥ N(2)� 90.9(2)�), is involved in a
strong H-bond with the crystallization solvent MeOH (O(3) ¥¥¥ N(2)� 2.910(3) ä with
O(3)�H(3) ¥¥ ¥ N(2)� 163.2(1)�). Further weak intermolecular H-bonds involve all the
O-atoms. The H-bonds, together with the normal Van der Waals interactions, are
responsible for the unusual crystalline packing. Selected geometrical parameters
together with solid-state X-ray data are reported in Table 1. Experimental data are in
good agreement with ab initio calculations. The differences affecting the Ph and Me
groups are due to the low-level basis set employed, while the differences in bond
lengths relative to the heteroatoms are essentially due to the H-bonds present in the
crystalline state. Ab initio calculations were good predictors of the great asymmetry in
the bond angles around the carbonyl group. As expected, because of the conforma-
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Fig. 1. View of the asymmetric unit of compound 3 with atom numbering scheme and thermal elipsoids at 40% of
probability, while H size is arbitrary. Dotted lines represent the H-interactions [(�)x, 1� y, z].



tional rigidity, the torsion angles calculated are also very similar to the corresponding
experimental values.

The molecule 4 (Fig. 2) is constituted of an N-unsubstituted pyrrole ring: a Me
group is bonded to C(1) (C(1)�C(7)� 1.488(3) ä) and aO-(benzamidoxy)carbonyl to
C(2), while C(3) and C(4) bear Ph groups. The bond distances and the planar
arrangement (maximum deviation from the least-squares plane is 0.006(2) ä for C(1))
confirm the aromaticity of the pyrrole ring. Bond distances and angles (C(1)�C(2)�
1.390(3) ä; C(2)�C(3)� 1.436(3) ä; C(3)�C(4)� 1.361(3) ä; C(1)�N(1)�C(4)�
111.3(2)�) are in good agrement with the corresponding values reported for 2,5-
dimethyl-4-(2-(phenylmethyl)benzoyl)-1H-pyrrole-3-carboxylate [7]. Between the
bonds C(1)�N(1) and C(4)�N(1) (1.351(3) and 1.388(3) ä, resp.), the shorter bond
is affected by the electroic effect of the Me C-atom C(7), which is co-planar with the
pyrrole ring (maximum deviation 0.002(2) ä). Steric requirements force the Ph rings at
C(3) and C(4) to rotate with respect to the pyrrole ring by 69.13(9)� and 38.2(1)�,
respectively, and by 72.42(9)� with respect to each other, thus minimizing reciprocal
steric interactions and interactions with the carbonyl O-atom O(2) (C(8) ¥¥ ¥ O(2)
2.837(3) ä). The C�CO�O group is slightly rotated with respect to the five-
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Table 1. Selected Bond Lengths [ä],Bond Angles, and Torsion Angles [�] for Compound 3 (by X-ray-diffraction
determination [RX] and by computation [HF])

RX HF/6-31G(d):3-21G(d):AM1

C(2)�C(3) 1.501(2) 1.509
C(2)�C(1) 1.513(3) 1.521
C(2)�C(4) 1.536(3) 1.541
C(2)�C(6) 1.563(3) 1.558
C(1)�O(1) 1.194(2) 1.179
C(1)�O(2) 1.359(2) 1.341
O(2)�N(1) 1.447(2) 1.382
N(1)�C(3) 1.280(2) 1.269
C(3)�C(7) 1.472(3) 1.457
C(6)�C(13) 1.519(2) 1.470
C(6)�C(5) 1.548(2) 1.561
C(5)�N(2) 1.481(2) 1.473
C(5)�C(19) 1.511(3) 1.481
N(2)�C(4) 1.266(2) 1.249
C(4)�C(25) 1.492(3) 1.519
C(3)�C(2)�C(4) 118.21(15) 117.22
C(1)�C(2)�C(4) 110.10(15) 108.56
C(3)�C(2)�C(6) 114.77(15) 116.46
C(1)�C(2)�C(6) 113.36(15) 116.86
O(1)�C(1)�O(2) 121.88(19) 123.00
O(1)�C(1)�C(2) 129.62(19) 129.14
O(2)�C(1)�C(2) 108.50(16) 107.79
C(1)�O(2)�N(1) 109.66(14) 111.49
C(3)�N(1)�O(2) 108.39(15) 109.34
C(4)�N(2)�C(5) 110.73(16) 110.77
N(1)�C(3)�C(7)�C(12) 31.2(3) 30.74
C(2)�C(6)�C(13)�C(14) � 73.0(2) � 73.67
N(2)�C(5)�C(19)�C(24) 57.5(2) 53.46



membered ring, as can be seen from the C(1)�C(2)�C(5)�O(1) (�16.1(4)�) torsion
angle. While C�CO�O bond distances are typical of this fragment, and the large
O(1)�C(5)�C(2) bond angle (128.5(2)�) is mainly determined by steric hindrance
between O(1) and the Me group (O(1) ¥¥¥ C(7)� 3.035(3) ä). The amide group
C(6)�O(3)�N(2) is rotated by 77.73(9)� with respect to the C�CO�O and by
29.2(1)� with respect to the Ph ring to which it is directly bonded. The bond distances
and angles of the fragment are similar to those found in N,O-dibenzoyl-N-(o-
tolyl)hydroxylamine [8] where, surprisingly, the O(1) ¥¥¥ O(3) distance is the same
(3.110(3) ä). Few compounds with similar benzoylhydroxylamine groups have so far
been structurally characterized [9]. The conformation observed in the solid state has
the two-fold purpose of minimizing steric-type effects and favoring intermolecular
H-interactions and the only possibile intramolecular interaction O(1) ¥¥¥ H(7c)�C(7).
The most important H-bonds, which stabilize the whole crystal packing, are those
involving the pyrrole NH H-atoms N(1): N(1) ¥¥ ¥O(3��)� 2.868(3) ä with N(1)�H(1)
¥¥¥ O(3��) 168(2)� and N(2) ¥¥ ¥O(1�)� 2.880(3) ä with N(2)�H(2) ¥¥¥ O(1�) 166(2)�. The
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Fig. 2. Molecular drawing of compound 4 showing the atom numbering scheme. Thermal elipsoids are at 40% of
probability and H size is arbitrary. Dotted lines represent the intermolecular H-interactions [(�) 1� x, � y, � z ;

(��) � x, � y, � z ; (���) x, � y� 1/2, z� 1/2].



latter involves inversion-centre-related molecule pairs (R2
2(10)) through the

N(2)H�CO(1) group [10].
The conformational structure observed in the solid state is very close to one of the

numerous minima in the potential-energy surface. The bond distances and angles
calculated are in good agreement with the solid state X-ray-structural parameters;
selected bond distances, angles, and some relevant torsion angles are reported in
Table 2. The observed differences in bond lengths and angles are generally due to the
low-level basis set and, in the case of heteroatoms, are mainly determined by molecular
packing and intermolecular H-bonds. Torsion angles, as expected, are somewhat
different because of the numerous degrees of conformational freedom present in the
molecule.
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Table 2. Selected Bond Lengths [ä], Bond Angles, and Torsion Angles [�] for Compound 4 (by X-ray diffraction
determination [RX] and by computation [HF])

RX HF/6-31G(d):3-21G(d):AM1

N(1)�C(1) 1.351(3) 1.341
N(1)�C(4) 1.388(3) 1.386
C(1)�C(2) 1.389(3) 1.376
C(1)�C(7) 1.488(3) 1.503
C(2)�C(3) 1.435(3) 1.443
C(2)�C(5) 1.440(3) 1.463
C(3)�C(4) 1.360(3) 1.360
C(3)�C(8) 1.488(3) 1.446
C(4)�C(14) 1.466(3) 1.447
C(5)�O(1) 1.204(3) 1.193
C(5)�O(2) 1.391(3) 1.351
O(2)�N(2) 1.397(2) 1.378
N(2)�C(6) 1.355(3) 1.396
C(6)�O(3) 1.213(3) 1.190
C(6)�C(20) 1.489(3) 1.479
N(1)�C(1)�C(7) 121.7(2) 121.2
C(2)�C(1)�C(7) 131.8(2) 131.4
C(1)�C(2)�C(5) 121.9(2) 123.3
C(3)�C(2)�C(5) 129.9(2) 129.4
O(1)�C(5)�O(2) 121.6(2) 121.2
O(1)�C(5)�C(2) 128.5(2) 126.7
O(2)�C(5)�C(2) 109.9(2) 112.1
C(5)�O(2)�N(2) 114.2(2) 115.7
C(6)�N(2)�O(2) 117.1(2) 117.7
O(3)�C(6)�N(2) 122.8(3) 119.2
O(3)�C(6)�C(20) 123.3(3) 121.6
N(2)�C(6)�C(20) 114.0(2) 119.2
C(1)�C(2)�C(5)�O(1) � 16.1(4) � 8.8
C(2)�C(5)�O(2)�N(2) � 169.7(2) 178.0
C(5)�O(2)�N(2)�C(6) 75.0(3) 78.3
O(2)�N(2)�C(6)�C(20) 175.1(2) 24.0
C(4)�C(3)�C(8)�C(13) � 68.5(3) � 86.1
N(1)�C(4)�C(14)�C(15) � 37.1(4) � 41.2
N(2)�C(6)�C(20)�C(21) � 30.3(4) 31.6



Fig. 3 shows torsional barrier variation around the N�O bond obtained from HF
and B3LYP calculations. As can be seen from the picture, both ab initio and DFT
calculations are able to locate the other two minima near 90� and 160�. Between the
conformations observed in the solid state, where a strong intermolecular H-bond is
present, and the minimum conformation (at �� 90�), reached at the four levels of
calculation, we observe that the molecule is able to form a weak intramolecular H-bond
involving O(1) and H(2) (H(2) ¥¥ ¥O(1)� 2.58 ä). This H-bond interaction also
determines the partial minimum observed at �� 160�, corresponding to H(2) ¥¥ ¥
O(1)� 2.228 ä. Here, however, although the H-bonding interaction is stronger than
that mentioned above, the repulsive interaction between the carbonyl O(3) atom and
the electronic � cloud of the Ph ring at C(3) (O(3) ¥¥¥ (phenyl centroid) 3.50 ä starts to
become significant). The rotational barrier appears to be very low: 2.33 kcal mol�1 and
4.16 kcal mol�1 are the maximum and minimum values calculated at B3LYP/6-31G(d)
and HF/6-31G(d) levels, respectively. Such torsional barrier energy values are evidence
of the great conformational flexibility of the molecule and represent a useful first step
in relating structural features to biological properties.

Experimental Part

Compound 4 and its precursor 3 were synthesized by modification of the one-pot procedure described in
[3]. The intermediate 3 was isolated with an increase in yield (from 10 to 68%) by performing the reaction with
an equimolar amount of 3-phenyl-4-benzylideneisoxazol-5(4H)-one (1) and 4-methyl-2-phenyloxazol-5(4H)-
one (MPO; 2) [11] in anh. toluene under dry N2 and refluxing the mixture for 10 min. The solvent was removed
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Fig. 3. Variation of torsional potential energy with rotational angle � (C(6)�N(2)�O(2)�C(5)) for compound 4
at the HF/STO-3G, STO-3G*, 3-21G*, 6-31G(d) , and B3LYP(6-31G(d)) levels



under reduced pressure, and the residue was purified by column chromatography (silica gel; CHCl3).
Subsequently, the treatment of 3 in dioxane/PhCNO 1 :2 led to the formation of 4 in almost quant. yield. The
physical and spectral data of 3 and 4 are the same as those reported in [3]. A short summary of their X-ray
structure determination data is reported in Table 33).

Monocrystals of 3 and 4 suitable for X-ray-analysis were obtained from a MeOH soln. by slow evaporation.
Two colorless irregular crystal samples were mounted on the Siemens automated four-circle single-crystal
diffractometer P4. The diffraction data [12] were collected at room temperature with graphite-monochromated
MoK� radiation (�� 0.71073 ä). Lattice parameters for both 3 and 4 were obtained from least-squares
refinement of the setting angles of 36 reflections with 13� 2�� 28�. Suitable correction was needed to allow for
the significant crystal decay of 3, as evidenced by the 43% decrease in intensity in the check reflections
monitored of the each 197 measurements. Reflection intensities were evaluated by the profile fitting of a 96-step
peak scan among 2� shells procedure [13] and then corrected for Lorentz polarization effects. Standard
deviations �(I) were estimated from counting statistics. No of absorption effects were taken into account. The
statistics �E2� 1 � and systematic absences pointed to the centrosymmetric space groups P1≈ and P21/c for
compound 3 and 4, resp. Data-reduction was performed with the SHELXTL package [14]. Both structures were
solved by a combination of standard direct methods [15] and Fourier synthesis, and refined by minimizing the
function �w(Fo

2�Fc
2)2 with the full-matrix least-square technique based on all independent F 2 data, with

SHELXL97 [16]. All non-H-atoms were refined anisotropically. H-Atoms were included in both the
refinements of the −riding model× method with the X�H bond geometry depending on the parent atom X,
while the isotropic displacement parameter was fixed to a single common unrefined value (0.070 and 0.080 ä2,
resp.). In the model of compound 4, the two N-bonded H-atoms H(1) and H(2) were located on the difference
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3) Crystallographic data (excluding structure factors) for the structures reported in this paper have been
deposited with the Cambridge Crystallographic Data Centre (CCDC) as supplementary publication No.
CCDC-167756 and -167757 for compound 3 and 4, respectively. Copies of the data can be obtained, free of
charge, on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK (fax: �44(1223) 336-033; e-
mail: deposit@ccdc.cam.ac.uk).

Table 3. Crystal Data and Structure Refinement for Compounds 3 and 4

Compound 3 4

Empirical formula C26H24N2O3 C25H20N2O3

Formula weight 412.47 396.43
Crystal system, Space group Triclinic, P1≈ Monoclinic, P21/c
Unit-cell dimensions a [ä] 8.143(1) 10.299(1)

b [ä] 11.053(2) 18.351(3)
c [ä] 12.733(2) 11.626(2)
� [�] 96.89(1) 90
� [�] 93.97(1) 108.20(1)
� [�] 105.84(1) 90

Volume [ä3] 1088.3(3) 2087.4(5)
Z 2 4
Density (calc.) [Mg/mm3] 1.259 1.261
Absorption coefficient [mm�1] 0.083 0.084
F(000) 436 832
Theta range for data collection [�] 1.94 ± 25.05 2.15 ± 25.05
Reflections collected 4249 3978
Independent reflections 3859 (R(int)� 0.0180) 3692 (R(int)� 0.0145)
Data/restraints/parameters 3859/0/281 3692/0/280
Goodness-of-fit on F 2 0.688 0.672
Final R indices (I� 2 � (I)) R1� 0.0392, wR2� 0.0889 R1� 0.0409, wR2� 0.0812
R indices (all data) R1� 0.0857, wR2� 0.0986 R1� 0.1153, wR2� 0.0927
Extinction coefficient 0.023(2) 0.0054(6)
Largest diff. peak and hole [eä�3] 0.158 and �0.246 0.139 and �0.132



Fourier map and refined as normal isotropic atoms without any constraint. An empirical extinction parameter
was included in the final refinement cycles of both models. Both least-difference Fourier maps showed no
significant electron-density residuals. Final geometrical calculations and drawings were carried out with the
PARST program [17] and the Siemens package XP utility, resp. All calculations were performed on a 	-VAX
3400 and on a DEC-alpha 3000/400.

Ab initio and DFT calculations, molecular modelling, and geometry optimization were carried out on
compounds 3 and 4 and on model systems by means of the GAUSSIAN 98 [18] series of programs. Ab initio
geometry optimization on compound 3 was performed with the keyword ONIOM [19] to divide the molecule
into three layers: the central spiro fragment was optimized at HF/6-31G(d) level, while the Me and Ph groups
were optimized at HF/STO-3G(d) and AM1 levels, resp. Because of the large computational costs, the geometry
of compound 4 was also optimized at three levels using the keyword ONIOM: HF/6-31G(d), HF/3-21G(d), and
AM1, for the central fragment, the Me group and the three Ph groups respectively. The conformation of
compound 4 obtained from X-ray-analysis with a C(6)�N(2)�O(2)�C(5) torsion angle �� 75.0(3)� was taken
as the origin, and its energy set to zero. Internal rotation was studied by scanning the torsion angle (�) by 10
values from 20� to 180�. For each �, a single-point energy calculation was performed without geometry
optimization. Calculations were undertaken at restricted Hartree-Fock (RHF) level with STO-3G, STO-3G(d),
3-21G(d), and 6-31G(d), and at density functional theory (DFT) level with Becke×s three-parameter hybrid
method (B3LYP) and 6-31G(d) [20] as the basis set.
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